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Analytical Solutions of the Lattice Boltzmann
BGK Model
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Analytical solutions of the two-dimensional triangular and square lattice
Boltzmann BGK models have been obtained for the plane Poiseuille flow and
the plane Couette flow. The analytical solutions are written in terms of the
characteristic velocity of the flow, the single relaxation time 7, and the lattice
spacing. The analytic solutions are the exact representation of these two flows
without any approximation. Using the analytical solution, it is shown that in
Poiseuille flow the bounce-back boundary condition introduces an error of first
order in the lattice spacing. The boundary condition used by Kadanoff et al.
in lattice gas automata to simulate Poiseuille flow is also considered for the
triangular lattice Boltzmann BGK model. An analytical solution is obtained and
used to show that the boundary condition introduces an error of second order
in the lattice spacing.

KEY WORDS: Lattice Boltzmann methods; analytical solution; channel
flow; Couette flow.

1. INTRODUCTION

Since the appearance of lattice gas automata (LGA) and its later
derivative, the lattice Boltzmann equation method (LBE), as alternative
computational methods to study transport phenomena, some analytical
solutions have been obtained for these methods for nonuniform flows in 2D
or 3D models.>® They are based on linearized Boltzmann models, and
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employ approximations. In refs. 3-5 the solution around a global equi-
librium with constant density and isotropic velocity (zero velocity) was
considered. In ref. 6 the first order and second order of deviation of the dis-
tribution function from equilibrium were assumed to take a certain form in
terms of flow quantities, and the coefficients in this form were obtained
using a Chapman-Enskog procedure. These analytic results provided
insight for applications of the methods. For example, the analytical results
allow one to calculate viscosity from given collision rules and to estimate
and to improve bounce-back boundary conditions for LGA. They are
valuable in enhancing our understanding of the method. Nevertheless,
analytical solutions for real flows with boundaries like the Poiseuille flow,
which is represented exactly by a second-order finite-difference scheme on
a uniform mesh, have not been obtained previously for LGA or LBE. One
reason may be that the boundary conditions used in LGA and LBE are not
exact. For example, bounce-back or a combination of bounce-back and
specular reflection® for modeling the nonslip boundary condition are only
approximate. The effective nonslip boundary is inside the bounce-back
row.*® Recently, Noble et al.'”’ proposed a boundary condition for the
lattice Boltzmann BGK model (LBGK) on a triangular lattice. When this
boundary condition was applied to plane Poiseuille flow, the steady-state
solution of the distribution function gave a parabolic velocity profile up to
machine accuracy. The result suggests the existence of an analytical solu-
tion to LBGK, which is an exact representation of the Poiseuille flow. In
this paper, analytical solutions for the Poiseuille flow are derived together
with analytical solutions for the plane Couette flow for both triangular and
square lattices.

2. ANALYTICAL SOLUTIONS OF THE TRIANGULAR LATTICE
LBGK MODEL

First let us consider the lattice Boltzmann model on a triangular
lattice (FHP model). For a channel flow, a triangular lattice is constructed
as shown in Fig. 1. There are two types of particles on each node of an
FHP model: rest particles (type 0) with e, =0 and moving particles (types
1-6) with unit velocity e;,=(cos[{(i —1) /6], sin[(i— )n/6], i=1,.., 6,
along six directions. Consider the particle distribution functions f;(x, 1),
which represent the probability of finding a particle at node x = (x, y) and
time ¢ with velocity e;. The lattice Boltzmann BGK model proposed in refs.
8 and 9 is the eqution for the evolution of f;:

Si{x+de, t4+3)— fi(x, 1) = —% [fi(x, 6) = fO(x, )], i=0,.,6 (1)
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Fig. 1. The geometry of the plane channel flow.

where f{°)(x, t) is the equilibrium distribution of the particle of type i at x,
t, the right-hand side represents the collision term, and 7 is the single
relaxation time which controls the rate of approach to equilibrium. The
density per node, p, and the macroscopic flow velocity, u, are defined in
terms of the particle distribution function by

6 6
fi=p, X fiei=pu (2)
i=0 i=1

The equilibrium distribution functions depend only on local density and
velocity. A suitable equilibrium distribution for the FHP model can be
chosen in the following form'®:

fQ)=dy—pu-u=ap—pu-u

3
FO=d4dplle W 2e wiodusu],  i=lu6 )

where o is an adjustable parameter, d=(p—d,)/6, and 3, [V =p,
S, f%e,=pu. Note that Eq.(l) is written in physical units with the
value of the lattice link being J. Using unit speed for particles (with some
physical time unit), a time step has the value of ¢ as well. A Chapman-—
Enskog procedure can be applied to Eq. (1) to derive the macroscopic
equations of the model. They are given by: the continuity equation [with
an error term O(42) being omitted ]

)

aI+V-(pu)=0 4)

and the momentum equation [with terms O(6%) and O(du®) being
omitted ]

ar(pua)-'-aﬁ(puauﬁ): _aa(cgp)_*-aﬁ(zvpsaﬂ) (5)
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where the Einstein summation convention is used, S,;= %(aau,;+6pu,) is
the strain-rate tensor, the pressure is given by p = c?p, where ¢, is the speed
of sound with ¢2=(1-a)/2, and v=[(2t—1)/8]4, with v the kinematic
viscosity. The form of the error terms and the derivation of these equations
can be found in refs. 10 and 11. The macroscopic equations of LBGK
represent the incompressible Navier-Stokes equations in the limit as 6 — 0,
p— po (a constant) and the Mach number approaches zero.

The plane Poiseuille flow in a channel with 2L and velocity
u=(u,,u,) is given by

2 F) 9 :
ux=u0(l—%>, u, =0, £=—G, é:o (6)

where G is a constant related to the characteristic velocity u, by
G =2pvuy/L? (D

and the flow density p is a constant. This is an exact solution of the
incompressible Navier—Stokes equations:

V-u=0
(8)
al(pua) + aﬂ(puauﬁ) = _aap +:uaﬂﬁua

where y = pv. Without loss of generality, we assume that L=1 (a simple
scaling of y'=y/L makes y'e[ —1,1]). To approximate Poiseuille flow
using the lattice Boltzmann model, it is convenient to replace the constant
gradient by a body force g so that pg = —Vp. The momentum equation of
NS equations with a body force is

al(pua)+a/](puuu/})= _aap+pga+,uaﬁﬁua (9)

The Poiseuille flow can be generated with a body foce g with pg.=G,
g, =0, where the pressure is held constant. An LBGK which incorporates
the body force is a modification of Eq. (1) given by

filx+de;, t+0)—fi(x,1)= —% Lfi(x, ) = fOx, )] +6h;,  (10)

where the A; are chosen as
hy=0, hi=+G/M4, i=1,2,6; h,=—G/4, i=3,4,5 (11)
so that
Y h;=0, Y he;=pg, Y hiene=0
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Now suppose there exists a solution f;(x, ¢) of Eq. (10) and it exactly
represents the Poiseuille flow. We then expect the following properties:

1. fi(x,t) is steady (independent of 2).

2. fi(x,t) is independent of x, hence is only a function of y, denoted
by fi(y)-

3. fi(y)=Sf—y), and fi(y)=fs(—y) from the symmetry of the
flow.

4. 3, fi(y)=p (constant).

5. X fily) e =puy), where u(y) =uyl —y*) (remember L=1).
6. 2. fi(y)e,=0.

According to Eq. (3), the equilibrium distributions are given by

[ =do~pu®  [u=u(y)]

O _ g, P P 2 o_g_ P P 2
A d+3u+2u, f9=d Futou
(12)
0_g. P o_g_P
/5 d+6 u, A) d 6 u
P P
f‘5°’=d—gu, f‘6°’=d+gu
d={(p—d,)/6. Using properties 1 and 2 and Eq. (10) for i=0 gives
1
Jo D)= 1) =~ (el =S 3)
Hence
fo(y)=f£)0)(y)=do—l7“2 (13)
Equation (10) for i=1 gives
L (©) G
fl(y)__'fl(y)_;(fl(y)_fl (J’))+5Z
Hence
L) =1(p) +0G/A (14)
Similarly

foy)=fp)—10G/A (15)
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It is seen that f,, f,, f, are functions of y*, y* through dependence of u and
u>. To find the remaining f;(y), we note that f{¥, i=2, 3,5, 6, do not have
a u? term and thus are functions of y? only, so the following form is
suggested:

.f;'(y)':ai+biy+ciy2’ i=273’5:6 (16)

where the 12 unknown coefficients «;, b,, ¢; depend on flow quantities 7 and
dy, but not on y. Using property 3, we obtain

athyy+ey?=ag—bey+cey’, astbyyt+esyi=as—bsy+csy?
which should be true for any y; thus
ag=a,, bg= —bs, Ce=10
as=da,, bs= —b, Cs=0;
Similarly, using property 6, we find
2b,y+2b3y=0, hence by=—b, (18)
Property 4 with information obtained gives
2a>+as) +2(cy+¢3) Y2+ fo0) + A1)+ fa( ) =p (19)

On using the expressions for f;, f1, f4 given in Egs. (13)-(15), we find (on
using the expression of d)

a,+ay,=%p—d,—2d)=2d (20a)
and
c3+c,=0 (20b)
which gives
3= —Cy, a;=2d—a, (21)

Similarly, property 5 with information obtained yields

1 T
ay=g puo+d——7;

oG
e2= — 2 pt (22)

At this point, only &, remains unknown. Using Eq. (10) for i =2, we have

oG

1
fz(y-l-dy)=fz(y)—;(fz(y)—f‘z°‘(y))+T (23)
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where dy is the wvertical spacing between two lattice rows and
dy= (\/3/2)5. On using the expression for /), we can obtain
e[y +2ydy+(dy)*1+b,y+bydy+a,
1 oG
=(1=3) e +bay ba 41| drgon(i =) |+ (2)

The balance of terms linear in y yields
b, = —2tc, dy=11pu,dy (25)

and fortunately the equations for the coefficients of y* and »° are both
satisfied. It is easy to check that the evolution equations for f3, f5, fs are
all satisfied with the choice of a;, b;, ¢; obtained so far.

Putting these results all together, we find that the quantities

fo=do—

f|=d+§u+§ +T_i§

f4=d—§u+/2—)u2—1576

fr=— épuoy +;Tpu0ydy+épu0 d_f5_G (26)
fy= +1pu0y- ;Tpuoydy—%puo+d+rfTG

fs= +épuoy +;rpu0ydy—épuo+d+“fTG
f6=_ép%yz—%TP“0J’dy+épuo+d—u?TG

satisfy properties 1-6 and that they together with the equilibrium distribu-
tion given in Eq. (12) satisfy the LBGK equation, Eq. (10). Hence it is an
exact representation of the Poiseuille flow in the region ye[ —1, 1].
Next, let us see to what boundary condition the solution in Eq. (26)
corresponds. Taking the bottom boundary with y= —1, u=0, we have
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oG oG
Jo=dy, f1=d+T_’ f4=d_r_
4 4
1 5G 1 oG
fom —stpupdy+d— 02, fi= +=tpupdy+d+ o (27)
3 4 3 4
1 205G 1 170G
f5=—§rpu0dy+d+T, f6=+§TPuodJ’+d— 4

It is seen that on the bottom, after the collision and forcing,
Jo=fs—210G/4, f5=f¢+216G/4. Hence, if a bounce-back boundary con-
dition f,=f5, f3=fs on f,, f3 is applied at the bottom to replace the colli-
sion and forcing step, the error is of order . This shows that the bounce-
back boundary condition is first-order accurate. This has been confirmed in
computations.''7!¥

To obtain the steady-state analytical solution in the LBGK simula-
tions, the boundary condition should be suitably chosen for the simulation.
The boundary condition proposed by Nobel ef al.” is a suitable choice. If
we are looking at a node B on the bottom, after streaming, f, and f; are
empty at the node B, since no particle is coming from outside. Then
Egs. (2) with u, =u,=0 are used to determine p, f5, f;. Then the normal
collision with force as given in Eq. (10) is applied to f; on the boundaries.
Suppose that initially we use uniform density p, and zero velocity through
the flow field; then we compute f{°(0) and set f;=f{? through the field.
Since there are no pressure gradients, it is natural that the density at each
node remains constant p, (confirmed by simulations). Therefore Eqs (2)
can be used to find the unique f,, f5 with the correct density and velocity,
hence they are consistent with the evoluation of f5, f; in the analytical
solution. Simulation results indicate that the numerical solution with this
boundary condition approaches the analytical solution as r — co.

It is noted that the solution given in Eq. (26) satisfies the LBGK equa-
tion, Eq. (10), for any y and it gives an x velocity of ug(l —p?). In the
region ye[ —1,1] it represents the Poiseuille flow. The flow can be
extended beyond the region ye[ —1, 1] with the given parabolic velocity
profile uo(1— y?). In the work by Kadanoff er al."*? a special treatment of
the problem (square wave forcing) is employed for the LGA method to
simulate Poiseuille flow. The simulation region is doubled in the y direc-
tion, with uniform forcing in the positive x direction for —1 <y <1 (the
lower channel, assuming the width of the channel is 2) and uniform forcing
in the negative x direction for 1 <y<3 (the upper channel). Periodic
boundary conditions on both the x and y directions are used. The solution
in lower or upper channel represents Poiseuille flow. Figure 2 gives an



Analytical Solutions of Lattice Boltzmann BGK Model 327

Fig. 2. Square wave forcing for the plane channel flow. Dashed lines indicate the positions
of walls. The two large arrows indicate the directions of uniform forcing.

example of the configuration. In the figure, dashed lines indicate the posi-
tions of walls; the number of rows in each channel is four, but it can be
an odd number also. This treatment avoids the use of the bounce-back
boundary condition and it produces better results. It is interesting to
consider this treatment for the LBGK equation, Eq. (10). Simulations in
refs 1 and 2 suggest that the steady-state velocity profile in each channel is
parabolic. First, let us check whether the analytical solution given in
Eq. (26) is a solution of this problem. We consider the lower channel of
width 2 with the coordinate system as shown in Fig. 2 so that the origin is
at the center of the channel. Obviously from the derivation of the solution
in Eq. (26), if x, x + e, are inside the channel, then the solution in Eq. (26)
satisfies Eq. (10) with p=const, u=(uy(1 —y?),0). The real problem
occurs when Eq. (10) involves nodes on both lower and upper channels.
For example, consider the case where /=2, x is a node on row 4 with y
coordinate y,=1—1dy; and nodes on row 5 have y coordinate
ys=1+1dy as shown in Fig. 2. In this case, Eq. (10) becomes

1 oG
fz(J’s)=f2()’4)—;(fz(y‘t)_f(zo)(h))+T (28)

Since the upper channel has the opposite parabolic velocity profile,
J3(ys)=/5(y4). Hence,

1 oG
Ss(ya) =S2(y4) —;(fz()’zt) — Py +T (29)
Substituting f>(ya4), f(»4), fs(y4) in Egs. (12) and (26) into Eq.(29)

gives
T pug (4 =Tt +1)=0 (30)
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Hence the solution in Eq.(26) does not satisfy Eq.(10) unless
41> — 67+ 1 =0, which gives two roots of 7, = (3 +./5)/4~ 13090, 7_ =
(3—./5)/4 ~0.3820.

Next let us look for an exact solution of Eq. (10) for the configuration
shown in Fig. 2. We consider the lower channel with forcing G given by
Eg. (7). We know that the velocity profile is slightly different from the exact
Poiseuille velocity profile. Nevertheless, we still expect the six properties
mentioned before Eq.(12) with the x velocity wu (y)=uy1—y>) being
replaced by

uy)=io(l +k—y*)  forsome constants i, k (31)

so that the velocity profile is still symmetric about the centerline of the
channel. When Eq. (10) involves nodes on both lower and upper channels,
we use an equation like Eq. (29). The equilibrium distribution is still given
by Eq. (12). It is easy to see that f, f;, f, are still given by Egs. (13)-(15)
with u=u(y) given in Eq.(31). Then assuming f;(y)=a;+b;y+c;y?
i=2,3,5,6, and using properties 1-6 and Eq.(10) inside the lower
channel, it is found that

110 = uo
[u, is related to the forcing by Eq. (7)], and

G
4
0G

1
a;=as= —gpuo(l +k)+d+T

1
“2=ae=glmo(1+k)+d—

1
b2= _b6= _b3=b5=§rpu0dy

1

Cr=Cg= —C3= —C(5= _gl’uo

Now only k is undetermined. Applying Eq. (10) for i=2 across the wall
between lower and upper channels gives

1
Sy )=y = ()= 1O N+ (3)

where y_=1—1dy is the y coordinate of the row just below the wall.
Solving this equation gives

k=%@7—61+1)6°
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It is easy to check that Eq.(10) is satisfied for other i’s across the wall.
Hence an exact solutions of Eq. (10) in the lower channel in this case is
given by

Jfo=do— pui?

f1=d+§u+'[2—7 +TéTG

f4=d—/3—)u+/2—)u2—raTG

fo= 1puoy +;rpuoydy+épu0(1+k)+d_T{TG (35)
5= +é”“°y +;fpuoydy—épuo(1+k)+d+“sTG

Js=+ lpuoy +;Tpu0ydy-—lpuo(1+k)+d+ffsTG
f6=_ép""yz_%”’“oydﬁépuo(l+k) d_TfTG

with u=u (y)=ue(1 +k—y?) and k is given by Eq. (34). The solution in
the upper channel can be obtained by antisymmetry about the wall. In the
lower or upper channel, the steady-state solution of Eq.(10) gives a
discrete representation of an exact parabolic x-velocity profile with the
maximum velocity given by ug(1 + k). The relative error in the maximum
velocity is k, which is O(62). The parabolic profile has a value of uyk at the
wall (y= —1 or y=1). The nonzero value of the velocity at the wall is also
0(6%), indicating second-order accuracy. When =71, =(3+ \/5 A=
1.3090, k=0, the simulation gives the exact Poiseuille flow corresponding
to the forcing. 7_ =(3—\/§)/4 also makes k=0, but the simulation is
unstable for this value of 7. It also noted that for a fixed lattice size (fixed
d), if T — oo, then the error also goes to infinity. These conclusions are
confirmed by numerical simulations.

Next, let us consider a plane Couette flow, where the flow between
two parallel plates (corresponding to y=0 and y=1) is driven by the
constantly moving top plate with velocity uy. In this case, the solution is
given by

U=u,=uy}, 0<y<], u,=0, Vp=0 (36)
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with p a constant and with no body force. So the LBGK model, Eq. (1),
is used. Using a similar procedure, we find the analytical solution of Eq. (1)
representing the Couette flow:

) PP PP
Jo=do—pu?, f1=d+§u+5u2, f4=d—§u+§u2

1 1 1
fa=+2 puoy+d grpuody, fi=— 6/moy+d+ tpugdy (37)

1 1 1 1
——pugy+d—_tpusdy, fo=+< puoy+d+ tpuy dy

fs=—% 6 6

We note that these analytical solutions are valid for any u,, 7, and dy.

3. ANALYTICAL SOLUTIONS OF THE SQUARE LATTICE
LBGK MODEL

The square lattice Boltzmann BGK model is proven to be more robust
than the triangular model in numerical simulations.!'"'¥ It is important
and interesting to find analytical solutions for it. The square lattice
Boltzmann BGK model uses three types of particles. Particles of type |
move along the x axis or the y axis with speed e,=(cos[=(i—1)/2],
sin[#(i —1]/2), i=1, 2, 3, 4, and particle of type 2 move along the diagonal
directions with speed e,=ﬁ(cos[7z(i~4—§)/2], sin[ (i —4 — 1)/2],
i=5,6,7,8. Rest particles of type 0 with e;=0 (speed zero) are also
allowed at each node. Each node is connected to its 8 nearest neighbors by
8 links of length J§ (in physical units) or ﬁ 0 as shown in Fig. 3. The
single-particle distribution function f;(x,t) again satisfies the LBGK
model, Eq. (1) (with i =0,..,, 8). The density p and the macroscopic velocity
u are still defined in Eq.(2). For the square lattice, the equilibrium
distribution can be chosen in the following form for particles of each type
(the model d2q9®):

f=4p[1—3u-u]
FO=4p[143(e; u)+3(e; u)’>—3u-ul, i=1,2,3,4 (38)
fO=%p[1+3(e; )+ 3(e;u)>*—3u-u], i=5,6,7,8

with

XS = LY Soen=pu
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Fig. 3. A square lattice.

The macroscopic equations of the model are the same as given in Eqgs. (4)
and (5) with ¢2=1/3, and v=[(2r—1)/6]4. To incorporate a body foce
into model Poiseuille flow, Eq.(10) (i=0,..,8) is used, with A; being
chosen in the following way!'®

he=0, h =G, h,=0, hy=-1G,  h=0

(39)
hs=hs=$G, he=h,= —5G

To derive an analytical solution of Eq. (10) for the square lattice, we
note that the six properties in Section 2 still apply, except that property 3
is replaced by:

3. L) =1f=y) Sfs(»)=Sfs(—y), and fe(y)=f;(—y) from the
symmetry of the flow.

Using a similar procedure as in Section 2, we can find that

S =fP)=5p(1=34%)  [u=uy(l-y*] (40)
Fily)=4p(1 +3u+3u?) + $tvpuyd (41)
S =45 p(1 = 3u+ 3u®) — Jrvpuyd (42)

and

ﬁ(y)=ai+biy+ciy2+diy3+eiy47 i=274a53677’8 (43)
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with
a,=a,, by= —b,, C4=Cs, dy= —d,, e4=e,
ag=4as, bg=—bs, €y =Cs, dg= —ds, €3 =¢€;s
a;=dag, by = —bq, €7=2Cg, dy= —dg, €;=2¢¢
and

= —47%puld* + 60 pu 6 — 1pu 6t + 1 puy 8°
+ brput 0 — Ltpui P+ 5 p— L puj

b, =47pul 5> — 4r%pul 6> + Stpuyd® — 3tpuyd

¢y = —2t%puld* + tpuid’ + 3 pug

e, = — & pul (45)

as=2tpuld* —3c’puzd® + Zrzpugé" —12puls? — tipuyo® — &5 tpuls®
+31pul 8 + StpuySt+ % p+ 15 pul + 15 pug + L1puyd

bs= —20%pu3d” + 2t°pul o — Jtpui s’ + dtpuid + trpuyd

2,252 2
¢s=1°pugd® — 3Tpugd® — g pug — 15 puo

ds= —tpuléd
es =15 pui (46)
and

ag=2t"pugd* — 30 pugd* + 12puld® — 77puld’ + t1pu oo’ — Hrpuyst
+ §Tpud 0’ — 5TPpUS  + 5 p + 15 pus — 15 puy — L1puyd
be= —2t3puld* +20°puid® — Itpul 6 + Ltpuyd — ttpuyd

ce=T2puUio? — 3Tpuyd® — § pul + 35 puy

ec=15 pu3 (47)

Equations (40)-(42) together with Eqs. (43)—(47) completely specify the
analytical solution, which is a solution of Eq. (10) and it exactly represents
the Poiseuille flow.

Next, let us see to what boundary condition this analytical solution
corresponds. Taking the bottom boundary with y= —1, u=0, we find the
relation of £, after the collision and forcing:
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fi=fi=3tvpued,  fo—fa=—20°(47pug —47%pug + Fpug)
Sfs—fr= —3puod® + Stpuld® + 4 pujd® — 4t’pul 8 + Srpup st (48)
fo—fo= +3%puyd? — Lrpuid® + 4t pulé® — dv*pui s’ + drpuid’

If a bounce-back boundary condition in which f, exchanges with f3,
fo=f4 fs=1f7, f¢=1s, is applied at the bottom to replace the collision
and forcing step, the error introduced into f; and f; is of order J. This
shows that the bounce-back boundary condition is first-order accurate.
This has been confirmed in computations.!''™'® To obtain the steady-state
analytical solution derived in this paper in LBGK simulations, the
boundary condition should be suitably chosen. No numerical simulation
on a square lattice Boltzmann BGK model has obtained an exact solution
for the Poiseuille flow so far. Of course, using 7 =1 and providing the equi-
librium distribution from zero velocity at the boundary is consistent with
the analytical solution and gives the exact solution (confirmed in simula-
tions), but t=1 is too restrictive. If we provide the analytical solution on
the boundary, we will be able to obtain the analytical solution in this
region also (confirmed in simulations). Specification of the analytical solu-
tion on the boundary does not provide a boundary condition of general
purpose. Nevertheless, the analytical solution will give some guidance in
developing better boundary conditions of general purpose for the model.
The analytical solution solution for plane Couette flow is given by

fo=3p(1-3uly?
fHi=spl +3“0J"+3u(2)y2)
Ss=3p(1 =3uyy +3u}y®)

fo= —4Tpuld® + frpuld® +3p+35 rpuoéy—-puoy
Ja= —3Tpuid’ + g1pugd® +§ p — ypusdy — g pup y?
fs=§72pugd® — 51pugd® — {51pugd + 36 p
+(— BTP”05+ 12 Pio) ¥ + 15 pitg ¥ (49)

So=117pud? — 51puld’ + 51pugd + 35 p
b= bomdd— i )+

fr=Lrpu3o? — f51pud® — ftpugd+ 55 p
+(+ srpuid+ 15 puy) y + 15 pug y*

fe=12pulé® — Hopudd® + tpugd + 35 p
+(+ §1puld + 35 puy) y + 15 pus y?

822/81/1-2-22
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For the Couette flow, the top boundary is a moving one; the analytical
solution given here will give guidance in developing a suitable boundary
condition for moving boundaries.

We note that these analytical solutions are valid for any u,, 1, and 4.
They will enhance our understanding of the method and will give guidance
in applications.
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