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Analytical solutions of the two-dimensional triangular and square lattice 
Boltzmann BGK models have been obtained for the plane Poiseuille flow and 
the plane Couette flow. The analytical solutions are written in terms of the 
characteristic velocity of the flow, the single relaxation time r, and the lattice 
spacing. The analytic solutions are the exact representation of these two flows 
without any approximation. Using the analytical solution, it is shown that in 
Poiseuille flow the bounce-back boundary condition introduces an error of first 
order in the lattice spacing. The boundary condition used by Kadanoff et al. 
in lattice gas automata to simulate Poiseuille flow is also considered for the 
triangular lattice Boltzmann BGK model. An analytical solution is obtained and 
used to show that the boundary condition introduces an error of second order 
in the lattice spacing. 

KEY WORDS: Lattice Boltzmann methods; analytical solution; channel 
flow; Couette flow. 

1. INTRODUCTION 

Since the appearance of lattice gas automata (LGA) and its later 
derivative, the lattice Boltzmann equation method (LBE), as alternative 
computational methods to study transport phenomena, some analytical 
solutions have been obtained for these methods for nonuniform flows in 2D 
or 3D models, t3~) They are based on linearized Boltzmann models, and 
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employ approximations. In refs. 3-5 the solution around a global equi- 
librium with constant density and isotropic velocity (zero velocity) was 
considered. In ref. 6 the first order and second order of deviation of the dis- 
tribution function from equilibrium were assumed to take a certain form in 
terms of flow quantities, and the coefficients in this form were obtained 
using a Chapman-Enskog procedure. These analytic results provided 
insight for applications of the methods. For example, the analytical results 
allow one to calculate viscosity from given collision rules and to estimate 
and to improve bounce-back boundary conditions for LGA. They are 
valuable in enhancing our understanding of the method. Nevertheless, 
analytical solutions for real flows with boundaries like the Poiseuille flow, 
which is represented exactly by a second-order finite-difference scheme on 
a uniform mesh, have not been obtained previously for LGA or LBE. One 
reason may be that the boundary conditions used in LGA and LBE are not 
exact. For example, bounce-back or a combination of bounce-back and 
specular reflection ~4) for modeling the nonslip boundary condition are only 
approximate. The effective nonslip boundary is inside the bounce-back 
row.Ca.6) Recently, Noble et  aL ~7~ proposed a boundary condition for the 
lattice Boltzmann BGK model (LBGK) on a triangular lattice. When this 
boundary condition was applied to plane Poiseuille flow, the steady-state 
solution of the distribution function gave a parabolic velocity profile up to 
machine accuracy. The result suggests the existence of an analytical solu- 
tion to LBGK, which is an exact representation of the Poiseuilte flow. In 
this paper, analytical solutions for the Poiseuille flow are derived together 
with analytical solutions for the plane Couette flow for both triangular and 
square lattices. 

2. ANALYTICAL SOLUTIONS OF THE TRIANGULAR LATTICE 
LBGK MODEL 

First let us consider the lattice Boltzmann model on a triangular 
lattice (FHP model). For a channel flow, a triangular lattice is constructed 
as shown in Fig. 1. There are two types of particles on each node of an 
FH P  model: rest particles (type 0) with eo = 0 and moving particles (types 
1-6) with unit velocity e i = ( c o s [ ( i -  1) ~/6], s i n [ ( / -  I)~/6], i =  1,..., 6, 
along six directions. Consider the particle distribution functions f`(x, t), 
which represent the probability of finding a particle at node x = (x, y) and 
time t with velocity ei. The lattice Boltzmann BGK model proposed in refs. 
8 and 9 is the eqution for the evolution off,.: 

f~(x + ~e;, t + di)-f`.(x, t ) =  _ 1  [f`(x,  t ) - f l~  t)], i = 0  ..... 6 (1) 
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Fig. 1. The geometry of the plane channel flow. 

where f~~ t) is the equilibrium distribution of the particle of type i at x, 
t, the right-hand side represents the collision term, and r is the single 
relaxation time which controls the rate of approach to equilibrium. The 
density per node, p, and the macroscopic flow velocity, u, are defined in 
terms of the particle distribution function by 

6 6 

~'. s ---- p, ,~, s ---- pu (2) 
i = 0  i = I  

The equilibrium distribution functions depend only on local density and 
velocity. A suitable equilibrium distribution for the FHP model can be 
chosen in the following formtg): 

fto~ = d 0 - p u ,  u = ~p --pu" u 
(3) 

f~~189 i = 1  ..... 6 

where ~ is an adjustable parameter, d = ( p - d o ) / 6 ,  and y,.~f~O)=p, 
~_.if~~ Note that Eq . ( l )  is written in physical units with the 
value of the lattice link being 6. Using unit speed for particles (with some 
physical time unit), a time step has the value of 6 as well. A Chapman- 
Enskog procedure can be applied to Eq. (1) to derive the macroscopic 
equations of the model. They are given by: the continuity equation [with 
an error term 0(6 2 ) being omitted] 

a: 
- - - +  V .  (pu )  = 0 (4)  
at 

and the momentum equation [with terms 0(6 2) and O(6u 3) being 
omitted] 

a,(pu~,) + a#(puo~u#) = --a~,(c2~p) + a#(2vpS~#) (5) 
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where the Einstein summation convention is used, S~p = �89 Opus,) is 
the strain-rate tensor, the pressure is given by p = c~p, where c~ is the speed 
of sound with c~ = ( 1 - ~ ) / 2 ,  and v = [ ( 2 r - 1 ) / 8 ]  6, with v the kinematic 
viscosity. The form of the error terms and the derivation of these equations 
can be found in refs. 10 and 11. The macroscopic equations of LBGK 
represent the incompressible Navier-Stokes equations in the limit as ~ ~ 0, 
P ~ Po (a constant) and the Math number approaches zero. 

The plane Poiseuille flow in a channel with 2L and velocity 
u = (u,., Uy) is given by 

( y 2 )  Op Op 
ux=uo 1----~ , uy=O, --=-G,ox Oy--=O (6) 

where G is a constant related to the characteristic velocity Uo by 

G = 2pvuo/L 2 (7) 

and the flow density p is a constant. This is an exact solution of the 
incompressible Navier-Stokes equations: 

V ' u = O  
(8) 

O,(pu~,) + Op(pu~,up) = -O~,p + llOppu~ 

where/~ --pv. Without loss of generality, we assume that L = 1 (a simple 
scaling of y' -- y/L makes y' e [ - 1, 1 ] ). To approximate Poiseuille flow 
using the lattice Boltzmann model, it is convenient to replace the constant 
gradient by a body force g so that pg = -Vp. The momentum equation of 
NS equations with a body force is 

O,(pu~) + Op(pu~u/s) = -O~p + pg~, + pOppu~, (9) 

The Poiseuille flow can be generated with a body foce g with Pgx = G, 
gy = 0, where the pressure is held constant. An LBGK which incorporates 
the body force is a modification of Eq. (1) given by 

f~(x + dei, t + d ) - f ~ ( x ,  t ) =  _ 1  [f i (x ,  t ) - f l ~  t)] +6hi  (10) 

where the hi are chosen as 

ho=0,  hi=+G/4, i = 1 , 2 , 6 ;  hi=-G/4 ,  i = 3 , 4 , 5  (11) 

so that 

E hi =O, E hiei=pg, E hiei~,eip=O 
i i i 
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Now suppose there exists a solution f,.(x, t) of Eq. (I0) and it exactly 
represents the Poiseuille flow. We then expect the following properties: 

1. f ,(x, t) is steady (independent of t). 

2. f;(x, t) is independent of x, hence is only a function of y, denoted 
by f,.(y). 

. 

flow. 

4. 

5. 

6. 

f 2 ( y ) = f 6 ( - - y ) ,  and f s ( y ) = f s ( - y )  from the symmetry of the 

~-,i f i ( Y )  = P (constant). 
~ i  f i ( Y )  eix = pu:,.(y), where Ux(y) = Uo(1 - yZ) (remember L = 1 ). 

Y., f , (y )  e o, = O. 

According to Eq. (3), the equilibrium distributions are given by 

f(o ~ = d o - p u  z [u=u:r  

f~aO)=d_Pu + Pu 2 

f(aO)=d_Pu 

f~~ 6. 

f ] ~  ~ U2r, 

f(o) = d + 6 u, 2 

f~o) = d _ _ 6  u ' 

d =  ( p - d o ) / 6 .  Using properties 1 and 2 and Eq. (10) for i =  0 gives 

fo(Y)  = fo(Y) _ 1  ( fo (Y)-  f(o~ 

Hence 

fo(y) = f(o~ = do - PU 2 

Equation (10) for i =  1 gives 

f~(Y)  = f d Y )  _ 1  (fl(Y) _ f~O)(y)) + ~ G 
r 4 

Hence 

f l (Y) = f~O)(y) + raG/4 

Similarly 

(12) 

(13) 

(14) 

(o) f4(Y)  = f 4  ( Y ) -  rOG/4 (15) 
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It is seen that fo, f l ,  f4 are functions of y4, y2 through dependence of u and 
u 2. To find the remaining f~(y), we note that f l  ~ i=2 ,  3, 5, 6, do not have 
a u 2 term and thus are functions of y2 only, so the following form is 
suggested: 

f ~ ( y ) = a i + b i y + c i y  2, i = 2 , 3 , 5 , 6  (16) 

where the 12 unknown coefficients ai, b~, ci depend on flow quantities r and 
dy, but not on y. Using property 3, we obtain 

a2 + b2 y + c2 y2 = a6 _ b6 y -r- c 6 y2, a3 + b3 y + c3 y2 = a5 - b5 y + c5 y2 

which should be true for any y; thus 

a6 = a2, b6= -b2 ,  C 6 = C  2 

a s=a3 ,  b s = - b 3 ,  c5=c  3 

Similarly, using property 6, we find 

2b2y+2b3y=O,  hence b 3 = - b 2  (18) 

Property 4 with information obtained gives 

2 ( a 2 + a 3 ) + 2 ( c 2 + c 3 ) y 2 + f o ( y ) + f l ( y ) + f 4 ( y ) = p  (19) 

On using the expressions for f o , f~ , f 4  given in Eqs. (13)-(15), we find (on 
using the expression of d) 

a2 q_ a3 = l (p  _ _  do _ 2d) = 2d (20a) 

and 

c3 + c2 = 0 (20b) 

which gives 

c3 = - c 2 ,  a 3 = 2 d - a 2  (21) 

Similarly, property 5 with information obtained yields 

1 r6G 1 
a2= g puo + d---~--;  c2= --~ pu o (22) 

At this point, only b2 remains unknown. Using Eq. (10) for i = 2 ,  we have 

f 2 ( y+dy )  = f 2 ( y ) - l - ( f 2 ( y )  col r (23) 
- r - - f *  - ( y ) )  + - - 4 -  
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where dy is the vertical spacing between two lattice rows and 
dy = (x/~/2)6. On using the expression for f~o), we can obtain 

c2[ y2 + 2y dy + (dy) 2] + b2 y + b2 dy + a2 

= ( 1 - ! )  ( c 2 y 2 q - b 2 y - i - a 2 )  q - ! [ d d - ~ p u o ( l  _y2)] q _ ~  (24) 

The balance of terms linear in y yields 

b2=-2rc2dY=�89 (25) 

and fortunately the equations for the coefficients of y2 and yO are both 
satisfied. It is easy to check that the evolution equations for f3, ]'5, f6 are 
all satisfied with the choice of ai, bi, ci obtained so far. 

Putting these results all together, we find that the quantities 

f o = do --  p u  2 

p p ~ T6G 
f ,  = d + ~  4 u + ~ u - + - -  

f 4 = d _ p  p ~ r6G u+~u-  
4 

1 1 1 r6G 
f2---- --  -~puoy2 +~zpuoydy+-~puo +d 4 (26) 

]'3 = + ~puoy2-~zpuoydy  - puo+d+r~ G 

1 1 1 r6G 
f5 = + 7puoy: +-grpuoydy-TPUo+d+ 

1 2 3 0  

1 1 1 r6G 
f6= -- 7 puoy2--g rpuoy dy +T puo +d 4 D J O 

satisfy propertiffs 1-6 and that they together with the equilibrium distribu- 
tion given in Eq. (12) satisfy the LBGK equation, Eq. (10). Hence it is an 
exact representation of the Poiseuille flow in the region y e [ - 1, 1 ]. 

Next, let us see to what boundary condition the solution in Eq. (26) 
corresponds. Taking the bottom boundary with y = -1 ,  u = 0, we have 
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fo = do, f l  = d + z6G f4 = d -  r6___GG 
4 ' 4 

1 r6G 1 r6G 
f2= - ~ r p u o d y + d - ~ - ,  f3= +3 r p u ~  4 (27) 

1 d + r6G 1 r~G 
f5 = - -~rpuody+ 4 ' f6 = + ~ r p u o d y + d  4 

It is seen that on the bottom, after the collision and forcing, 
f2 = f5 - 2rrSG/4, f3 = f6 + 2r~G/4. Hence, if a bounce-back boundary con- 
dition f2 =fs ,  f3 =f6  on f2, f3 is applied at the bottom to replace the colli- 
sion and forcing step, the error is of order 3. This shows that the bounce- 
back boundary condition is first-order accurate. This has been confirmed in 
computationsJt'-~3~ 

To obtain the steady-state analytical solution in the LBGK simula- 
tions, the boundary condition should be suitably chosen for the simulation. 
The boundary condition proposed by Nobel et al. ~7~ is a suitable choice. If 
we are looking at a node B on the bottom, after streaming, f,_ and ./3 are 
empty at the node B, since no particle is coming from outside. Then 
Eqs. (2) with u,.= Uy = 0  are used to determine P,f2 , f3 .  Then the normal 
collision with force as given in Eq. (10) is applied to f~ on the boundaries. 
Suppose that initially we use uniform density P0 and zero velocity through 
the flow field; then we compute f~~ and set f~ =f~oj through the field. 
Since there are no pressure gradients, it is natural that the density at each 
node remains constant Po (confirmed by simulations). Therefore Eqs (2) 
can be used to find the unique fz ,  f3 with the correct density and velocity, 
hence they are consistent with the evoluation of f_,, f3 in the analytical 
solution. Simulation results indicate that the numerical solution with this 
boundary condition approaches the analytical solution as t---, oo. 

It is noted that the solution given in Eq. (26) satisfies the LBGK equa- 
tion, Eq. (10), for any y and it gives an x velocity of uo(l -y ' -) .  In the 
region y e [ - 1 ,  1] it represents the Poiseuille flow. The flow can be 
extended beyond the region y ~ [ - 1, 1 ] with the given parabolic velocity 
profile Uo(1 -3,2). In the work by Kadanoff et alJ 1' 2) a special treatment of 
the problem (square wave forcing) is employed for the LGA method to 
simulate Poiseuille flow. The simulation region is doubled in the y direc- 
tion, with uniform forcing in the positive x direction for -- 1 ~<y < 1 (the 
lower channel, assuming the width of the channel is 2) and uniform forcing 
in the negative x direction for I ~<y~<3 (the upper channel). Periodic 
boundary conditions on both the x and y directions are used. The solution 
in lower or upper channel represents Poiseuille flow. Figure 2 gives an 
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Fig. 2. Square wave forcing for the plane channel flow. Dashed lines indicate the positions 
of walls. The two large arrows indicate the directions of uniform forcing. 

example of the configuration. In the figure, dashed lines indicate the posi- 
tions of walls; the number of rows in each channel is four, but it can be 
an odd number also. This treatment avoids the use of the bounce-back 
boundary condition and it produces better results. It is interesting to 
consider this treatment for the LBGK equation, Eq. (10). Simulations in 
refs 1 and 2 suggest that the steady-state velocity profile in each channel is 
parabolic. First, let us check whether the analytical solution given in 
Eq. (26) is a solution of this problem. We consider the lower channel of 
width 2 with the coordinate system as shown in Fig. 2 so that the origin is 
at the center of the channel. Obviously from the derivation of the solution 
in Eq. (26), if x, x + ei are inside the channel, then the solution in Eq. (26) 
satisfies Eq.(10) with p = c o n s t ,  u = ( u o ( 1 - y 2 ) , 0 ) .  The real problem 
occurs when Eq. (10) involves nodes on both lower and upper channels. 
For example, consider the case where i = 2, x is a node on row 4 with y 
coordinate Y4---1- �89 and nodes on row 5 have y coordinate 
Y5 = 1 + �89 dy as shown in Fig. 2. In this case, Eq. (10) becomes 

1 (f2(Y4) (0) ~G (28) - -  _ - f 2  (Y4))+~ f 2 (Ys )=f2 (Y4)  z 

Since the upper channel has the opposite parabolic velocity profile, 
f 2 (Ys )=  fs(y4).  Hence, 

1 
fs(Y4) = f2(Y4) - (A(Y4) to) --r --f2 (Y4))+~ - (29) 

Substituting f2(Y4), to) f 2  (Y4), fs(Y4) in Eqs. (12) and (26) into Eq. (29) 
gives 

puo ~2(4r2 - 7r + 1 ) = 0 (30) 
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Hence the solution in Eq.(26) does not satisfy Eq.(10) unless 

4r 2 - 63 + 1 = 0, which gives two roots of r+ = (3 + v/5)/4 ~ 1.3090, 3_ = 
(3 -- x/~)/4 ~ 0.3820. 

Next let us look for an exact solution of Eq. (10) for the configuration 
shown in Fig. 2. We consider the lower channel with forcing G given by 
Eq. (7). We know that the velocity profile is slightly different from the exact 
Poiseuille velocity profile. Nevertheless, we still expect the six properties 
mentioned before Eq.(12) with the x velocity u, . (y)=uo(1-y 2) being 
replaced by 

ux(Y) = uo( 1 + k - y2) for some constants ao, k (31 ) 

so that the velocity profile is still symmetric about the centerline of the 
channel. When Eq. (10) involves nodes on both lower and upper channels, 
we use an equation like Eq. (29). The equilibrium distribution is still given 
by Eq. (12). It is easy to see that f o , f l , f 4  are still given by Eqs. (13)-(15) 
with u=u.,.(y) given in Eq. (31). Then assuming f , . ( y )=ai+biy+ciy  2, 
i = 2 , 3 , 5 , 6 ,  and using properties 1-6 and Eq.(10) inside the lower 
channel, it is found that 

/gO = UO 

[Uo is related to the forcing by Eq. (7)], and 

1 r6G 
a 2 = a  6 =~puo(1 + k )  + d - - ~ -  

1 k z6G 
a3=a5 = - ~ p u o ( l  + ) + d +  

(32) 
1 

b2 = - -  b 6  = - b 3  = bs = ~ rpuo dy 

1 
C2 = C6 ~ - -C3= - -C5= - - 6  PUo 

Now only k is undetermined. Applying Eq. (10) for i = 2  across the wall 
between lower and upper channels gives 

f s ( Y - ) = f 2 ( Y - ) - - l ( f 2 ( Y - )  r -- f2 co) (y_) )  + ~_  6G (33) 

where y_  = 1 - �89 dy is the y coordinate of the row just below the wall. 
Solving this equation gives 

k = 3 ( 4 r 2 - 6 r +  1)62 
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It is easy to check that Eq. (10) is satisfied for other i's across the wall. 
Hence an exact solutions of Eq. (I0) in the lower channel in this case is 
given by 

f o = do - pu 2 

f l  d + 3 u  P ~ r6G = 

f4 d - P u  P ~ r6G 
= + ~ u -  4 

1 1 1 rJG  (35) 
f,. = - -~ puo y 2 +-~ rpuo y dy +-~ pu0(l +k )  + a - - - -~-  

1 ~ 1 k ) + d + r ~ G  f3 = + g puo y- + ~ rpuo y dy - 1 puo( 1 + 

f5 = + - ~ p u o y - + ~ r p u o y d y -  p u o ( l + k ) + d + r ~  G 

1 ~ 1 I r6G 
f6 = -- -6 puo y-  - -~ r puo Y dy + 7 puo(1 + k )  + d- - - -7-  

o t 4  

with u = u x ( y ) = U o ( 1  + k - y  z) and k is given by Eq. (34). The solution in 
the upper channel can be obtained by antisymmetry about the wall. In the 
lower or upper channel, the steady-state solution of Eq. (10) gives a 
discrete representation of an exact parabolic x-velocity profile with the 
maximum velocity given by Uo( 1 + k). The relative error in the maximum 
velocity is k, which is O(c~2). The parabolic profile has a value of uok  at the 
wall (y = - 1 or y = 1 ). The nonzero value of the velocity at the wall is also 
O(62), indicating second-order accuracy. When r = r+ = (3 + x/~)/4 
1.3090, k = 0, the simulation gives the exact Poiseuille flow corresponding 
to the forcing. 3_ = ( 3 - x / ~ ) / 4  also makes k = 0 ,  but the simulation is 
unstable for this value of 3. It also noted that for a fixed lattice size (fixed 
6), if r ~ oe, then the error also goes to infinity. These conclusions are 
confirmed by numerical simulations. 

Next, let us consider a plane Couette flow, where the flow between 
two parallel plates (corresponding to y = 0  and y =  1) is driven by the 
constantly moving top plate with velocity Uo. In this case, the solution is 
given by 

u = u x = u o y ,  0~<y< 1, Uy=0, V p = O  (36) 
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with p a constant and with no body force. So the LBGK model, Eq. (1), 
is used. Using a similar procedure, we find the analytical solution of Eq. ( 1 ) 
representing the Couette flow: 

fo=do_pu_ ' f l = d + P u  P 2 P Pu 2 " +~u, f4=d--'~u+-~ 

1 
f2 = +~puoy+d--~rpuody,  

1 1 
f3 = --~ puoy+d+-~ rpuody (37) 

1 1 
.['5 = --~ puo y + d--~ zpuo dy, f6 = +-~puoy+d+ rpuody 

We note that these analytical solutions are valid for any Uo, r, and dy. 

3. ANALYTICAL SOLUTIONS OF THE SQUARE LATTICE 
LBGK MODEL 

The square lattice Boltzmann BGK model is proven to be more robust 
than the triangular model in numerical simulations/TM 14) It is important 
and interesting to find analytical solutions for it. The square lattice 
Boltzmann BGK model uses three types of particles. Particles of type I 
move along the x axis or the y axis with speed e~=(cos [ l t ( i -1 ) /2 ] ,  
sin[Tr(i- 11/2), i--  I, 2, 3, 4, and particle of type 2 move along the diagonal 

directions with speed ei=v/'2(cos[Tr(i-4-�89 s i n [ r f f i - 4 - � 8 9  
i=5, 6, 7, 8. Rest particles of type 0 with e0=0  (speed zero) are also 
allowed at each node. Each node is connected to its 8 nearest neighbors by 
8 links of length 5 (in physical units) or x/~ 5 as shown in Fig. 3. The 
single-particle distribution function f,.(x, t) again satisfies the LBGK 
model, Eq. (1) (with i = 0 ..... 8). The density p and the macroscopic velocity 
u are still defined in Eq. (2). For the square lattice, the equilibrium 
distribution can be chosen in the following form for particles of each type 
(the model d2qgt9)): 

f ( o ~  

f(o) i _r i = ~PL 1 + 3(e~" u) + 9(ei" u)2-- 3 u ' u ] ,  / = 1 , 2 , 3 , 4  (38) 

f(o) , _r .  +3 (e~ .u )+  ~(ej-u) 2 - 3 u . u ] ,  / = 5 ,  6, 7, 8 i = ~ P L  1 _ _ 

with 

~ f ( O ) _  f ( O ) a  ~ ,  - P ,  Z Z  = p u  J o ' i  --o'i 
~r i o" i 
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b( 
/ 

/ ,  \ / ' , ,  / 

U. 

U. 
\ 

Fig. 3. A square lattice. 

The macroscopic equations of the model are the same as given in Eqs. (4) 
and (5) with c~= 1/3, and v=  [ ( 2 r - 1 ) / 6 1 6 .  To incorporate a body foce 
into model Poiseuille flow, Eq.(10) ( i = 0  ..... 8) is used, with hi being 
chosen in the following way c~5) 

ho =0,  h I = �89 hz =0,  h 3 = -- ~G, h 4 = 0  

h5 =hs  = ~G,  h 6 = h 7 =  - ~ G  
(39) 

To derive an analytical solution of Eq. (10) for the square lattice, we 
note that the six properties in Section 2 still apply, except that property 3 
is replaced by: 

3. f 2 ( y ) = f 4 ( - - y ) ,  f s ( y ) = f s ( - - y ) ,  and f 6 ( y ) = f 7 ( - y )  from the 
symmetry of the flow. 

Using a similar procedure as in Section 2, we can find that 

fo(y)=f(o~ ~p(1 3 2 = --~u ) [ u = u 0 (  1 _ y 2 ) ]  (40) 

2 "~ f l (Y )  = ~ P( 1 + 3u + 3u ) + F:vpuo6 (41) 

2 "J f3(Y') = ~ P( 1 -- 3u + 3u ) - Srvpuo6 (42) 

and 

f i ( y ) = a i + b i y + c i y 2 + d i y 3 + e ~ y  4, i = 2 , 4 , 5 , 6 , 7 , 8  (43) 
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with 

a 4 = a~, b~ = - b2, c4 = c2, d4 = - d 2 ,  e4 = e~ 

a s = aa, b8 = - b~, c8 = cs ,  d8 = - ds ,  e8 = es 

a 7 = a 6 ,  b7  = - b 6 ,  c7 = c6 ,  (:]7 = - d 6 ,  e 7 = e 6 

and 

a ~ = - 4 r 4 p u ~  4 + 6 r s p u o  ~ 4 - 7  , ~ 4 2 , ~ , _ ~r-puGfi + ~r-puG~- 

. .~ k r p u 2  ~ 4  1 -~ 9 - : p u ~ 6 -  + ~ p - "pu,~ 

9 ~ 2 9 9 1 2 
c2 = --  2 z -puG~  + r p u ? ~ -  + ~ p u  o 

d 2 = 31:PUo~ 

e2 = - ~ pu~ (45) 

as = 2z '4pUo ~ 4 -  3r3PUo ~4 7 ~ ~ 4 1 . . . .  + ~r -puG~ - -  ~r-puGo- -- ~r2puodi 2 -- ~ rpu02~ 4 

+ k W : o : - + & p ~ o : + ~ p  ' + - ~ p u  o + ~ p u o  + ~r2PUod ~ 

b s =  2 r a p u ~ 3 +  "J ") 3 I "~ 3 1 9 
- -  2r -puG 6  - -  ~ r p u ? ~  + + ~z'pu86 ~rpuo~ 

9 '~ 9 I 2 2 I 2 ~ puo 
c s = r-pusdV-- ~rpuofi -- gpUo- -  _ 

1 o 
ds = -- .~rpusgi 

l 2 ( 4 6 )  es = ~_ pu o 

and 

a6  = 2r4pUo64 _ 3 r 3 p U o O 4  7 9 9 4 __ ~'C! _gpUoO2 2 + + ~lr-pu~6~ k r 2 p U o  ~2 - -  l z p u 2 ~ 4  

1 " ) e ' )  1 2 + ~ r p ~ o - -  ~rP,oa ~ + ~ p + ~_ P~o-- ~ PUo-- kr2p~oa 
b6 = - 2 " r 3 p u 2 ~  3 -I- 2"r2puot~ a - -  �89  3 -t- �89 - -  ~'CpUo J 

2 9 ") 1 ") 9 1 2 
~_rpu~fi- - -  ~ pu o + ~ puo C 6 = "( p U ~ ( ~ -  - -  

I 
d 6 = - ~ rpu? )~  

I 2 
e6 = ~ p u  o (47) 

Equations (40)-(42) together with Eqs. (43)-(47) completely specify the 
analytical solution, which is a solution of  Eq. (10) and it exactly represents 
the Poiseuille flow. 

Next, let us see to what boundary  condition this analytical solution 
corresponds. Taking the bo t tom boundary  with y = - 1, u = 0, we find the 
relation of  f ~  after the collision and forcing: 
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f l - f 3  = ~rvpuo6, f2 - f 4  = -263(4r3pu~ -4r2pus+" ~Tpus), ", 
_ _ 2  o 9 I 9 9 f s - - f 7  = ~r-puoa-+~rpusa-+4r3puoa3--4r2pu~a3 +]rPUo 63 (48) 

2 2 ") 1 '9 9 f 6 - - f s  +~r puo6---grpus(~-+4"c3pu2(~ 3 ~ " 3 = --4r-pusg "4- 3"t'pu263 

If a bounce-back boundary condition in which f ,  exchanges with f3, 
f2 =f4 ,  f5 = f7 ,  f6 = fa ,  is applied at the bottom to replace the collision 
and forcing step, the error introduced into f ,  and f3 is of order ~. This 
shows that the bounce-back boundary condition is first-order accurate. 
This has been confirmed in computations. (l 1-13) To obtain the steady-state 
analytical solution derived in this paper in LBGK simulations, the 
boundary condition should be suitably chosen. No numerical simulation 
on a square lattice Boltzmann BGK model has obtained an exact solution 
for the Poiseuille flow so far. Of course, using r = 1 and providing the equi- 
librium distribution from zero velocity at the boundary is consistent with 
the analytical solution and gives the exact solution (confirmed in simula- 
tions), but r = 1 is too restrictive. If we provide the analytical solution on 
the boundary, we will be able to obtain the analytical solution in this 
region also (confirmed in simulations). Specification of the analytical solu- 
tion on the boundary does not provide a boundary condition of general 
purpose. Nevertheless, the analytical solution will give some guidance in 
developing better boundary conditions of general purpose for the model. 

The analytical solution solution for plane Couette flow is given by 

3 2 2 fo=94-p(1 ~UoY ) 

f ,  = ~ p(1 + 3Uo y + 3u o y2) 

f3 = ~ p(1 - 3u o y + 3u o y2) 

f 2 =  _ g r  p o 1  2 U 2 J 2  ..it - ~rpu~2 + 1 p + grpuodiy, 2 _ ~ pu o2 y_, 

1 ":' ~ e 2  f4 = -- gr-puso + ~ zpu~g 2 + ~ p -- �89 rpu~c~y _ ~ pu o2 y2 
1 2 9 c o  

f5 = ~ pu~o--  &puo~ 2 -  &pUo~ + ~ p 
I 2 2 ( 4 9 )  + ( -  ~rpu2~+ I puo) Y+~_puoy  

1 "~ 2 e ~  1 9 9 
f6 = gr-pUoO- -- ~rPUSg- + ~ rpuoO + ~6 P 

1 9 
+ ( -  g rpu86-  ~ pUo) y + ~ puoy 2 

1 o o e 9  1 ~ e o  
f~  = ~ y a u ; o -  - ~_ w u ~ o -  - ~ WUo,~ + ~6 p 

+ ( +  I 2 " " 
~rpUo~ + ~ puo) Y + ~ pusy-  

I 9 o ~ .  2 
A = ~-pu~o - h~p~og "- + &pUo~ + ~ p 

+ ( + ~rpu26 + ~ PUo) Y + ~ puoY 2 
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F o r  the Coue t te  flow, the top  b o u n d a r y  is a m o v i n g  one;  the ana ly t ica l  
so lu t ion  given here will give gu idance  in deve loping  a sui table  b o u n d a r y  
c o n d i t i o n  for m o v i n g  boundar i e s .  

We no te  tha t  these ana ly t ica l  so lu t ions  are val id for any  u0, 3, and  ~. 
They  will enhance  ou r  u n d e r s t a n d i n g  of  the m e t h o d  and  will give gu idance  
in  appl icat ions .  
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